Our main inventions have been an autonomous DNA model for finite-state machines, an automaton called computational genes able to logically control cell activities, the first autonomous solution of Adleman's first experiment, a bunch of new sticker-based algorithms, and a method that allows to implement sticker-based algorithms in silico onto dedicated hardware (FPGA).
Literature:
- I. Martinez-Perez, W. Brandt, M. Wild, K.-H. Zimmermann: Bioinspired parallel algorithms for maximum clique problem on FPGA architectures. J. Sig. Proc. Syst., 1939-8115 (online), 2009.
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: An autonomous DNA model for finite state automata. Int. J. Bioinform. Res. App., vol. 5, no. 1, 81-96, 2009.
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: Exploiting the features of finite state automata for biomolecular computing. J Recent Patents DNA & Gene Sequences, vol. 3, no. 2, 130-138, 2009.
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: DNA Computing Models. Springer, 300 pages, 2008.
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: Computational genes. Wikipedia, 2008.
- I. Martinez-Perez: Biomolecular Computing Models for Graph Problems and Finite State Automata. PhD thesis, mbv Berlin, 2007.
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: Computational genes: A tool for molecular diagnosis and therapy of aberrant mutational phenotype..BMC Bioinformatics, vol. 8, 365, 2007.
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: An autonomous DNA model for finite state automata. Techn. Report, 06.1, TUHH, 2006
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: Solving the maximum clique problem via DNA haiprin formation. Techn. Report, 06.3, TUHH, 2006.
- I. Martinez-Perez, Z. Ignatova, Z. Gong, K.-H. Zimmermann: Solving the Hamiltonian path problem via DNA hairpin formation. Int. J. Bioinform. Res. App., vol. 1, 389-398, 2006.
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: An autonomous DNA model for stochastic finite state automata. Techn. Report, 06.2, TUHH, 2006.
- I. Martinez-Perez, Z. Ignatova, K.-H. Zimmermann: Rechengen/Computer Gene/Gene de Calcul, DE/EN/US, 2007-09.
We have developed a new algorithm for the secondary structure prediction of DNA/DNA cross-hybridisation complexes called HYBGRAPH. The method is based on Gibbs free energy minimisation and the paradigm of dynamic programming.
Literature:
- S. Torgasin, K.-H. Zimmermann: Algorithm for thermodynamically based prediction of DNA/DNA crosshybridisation. Int. J. Bioinform. Res. App., vol. 6, no. 1, 82-97, 2010.
No comments:
Post a Comment